Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection

نویسندگان

  • Leo Swadling
  • John Halliday
  • Christabel Kelly
  • Anthony Brown
  • Stefania Capone
  • M. Azim Ansari
  • David Bonsall
  • Rachel Richardson
  • Felicity Hartnell
  • Jane Collier
  • Virginia Ammendola
  • Mariarosaria Del Sorbo
  • Annette Von Delft
  • Cinzia Traboni
  • Adrian V. S. Hill
  • Stefano Colloca
  • Alfredo Nicosia
  • Riccardo Cortese
  • Paul Klenerman
  • Antonella Folgori
  • Eleanor Barnes
چکیده

An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were only induced by vaccination when there was a sequence mismatch between the autologous virus and the vaccine immunogen. However, these T-cells were not cross-reactive with the endogenous viral variant epitopes. Conversely, when there was complete homology between the immunogen and circulating virus at a given epitope T-cells were not induced. T-cell induction following vaccination had no significant impact on HCV viral load. In vitro T-cell culture experiments identified the presence of T-cells at baseline that could be expanded by vaccination; thus, HCV-specific T-cells may have been expanded from pre-existing low-level memory T-cell populations that had been exposed to HCV antigens during natural infection, explaining the partial T-cell dysfunction. In conclusion, vaccination with ChAd3-NSmut and MVA-NSmut prime/boost, a potent vaccine regimen previously optimized in healthy volunteers was unable to reconstitute HCV-specific T-cell immunity in HCV infected patients. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The generation of a simian adenoviral vectored HCV vaccine encoding genetically conserved gene segments to target multiple HCV genotypes

BACKGROUND Hepatitis C virus (HCV) genomic variability is a major challenge to the generation of a prophylactic vaccine. We have previously shown that HCV specific T-cell responses induced by a potent T-cell vaccine encoding a single strain subtype-1b immunogen target epitopes dominant in natural infection. However, corresponding viral regions are highly variable at a population level, with a r...

متن کامل

Expansion of CD4+CD25+FoxP3+ Regulatory T Cells in Chronic Hepatitis C Virus Infection

Background: Regulatory T cells (Tregs) have been involved in impaired immunity and may have a pivotal role in persistence of viral infections. Objective: To develop a simple and reliable in-house three color flow cytometery of peripheral blood to understand the role of HCV infection in the increase of Tregs. Methods: The level of naturally occurring CD4+CD25+FoxP3+ regulatory T cells (nTregs) i...

متن کامل

HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients.

BACKGROUND & AIMS Spontaneous resolution of hepatitis C virus (HCV) infection depends upon a broad T cell response to multiple viral epitopes. However, most patients fail to clear infections spontaneously and develop chronic disease. The elevated number and function of CD3(+)CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) in HCV-infected patients suggest a role of Treg cells in impaired viral...

متن کامل

Enhanced Immune Responses of a Hepatitis C Virus core DNA Vaccine by co-Inoculating Interleukin-12 Expressing Vector in Mice

Background: Hepatitis C (HCV) is a worldwide problem without an effective vaccine with more than 170 million chronically infected people worldwide. DNA vaccines expressing antigenic portions of the virus with adjutants have recently been developed as a novel vaccination technology. Objectives: In the present study, a DNA vaccine expressing HCV core protein was developed with IL12 as a genetic a...

متن کامل

Peptide-pulsed dendritic cells induce the hepatitis C viral epitope-specific responses of naïve human T cells.

Hepatitis C virus (HCV) is a major cause of liver disease. Spontaneous resolution of infection is associated with broad, MHC class I- (CD8(+)) and class II-restricted (CD4(+)) T cell responses to multiple viral epitopes. Only 20% of patients clear infection spontaneously, however, most develop chronic disease. The response to chemotherapy varies; therapeutic vaccination offers an additional tre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016